You have until Tuesday, 11/15, at 9pm to submit the completed class definition in problem 1 on MATLAB Grader. Problem 2 is extra practice for prelim 2 and does not need to be submitted.

1 Class Interval

1.1 Download the file Interval.m from the *Exercises* page. Let's play with some Interval objects in the Command Window:

format compact	% Set Command Window to single spacing		
a = Interval(3,7)	% See in Workspace pane that the class of a is Interval. Read		
	% Interval.m to see how properties were declared.		
disp(a.left)	% Access the left property using dot notation; should be 3		
disp(a.right - a.left)	% Should be 4, the interval's width		
a.shift(10)	% Call a's shift method to shift interval a to the right by 10		
	% units. Method shift doesn't return a value (see method		
	% definition in Interval.m), so you do not see anything displayed		
	% in Command Window		
disp(a)	% Display interval a now:		
<pre>b = Interval(9,15);</pre>			
g = a.isIn(b)	% Is interval a in interval b?		
	% Read method isIn. Ask if you have any questions.		
h = b.isIn(a)	% Is interval b in interval a?		

Observations: To access an *instance variable* (property), the syntax is <u>ReferenceName.VariableName</u>. To access an *instance method* (method defined inside a classdef for each object), the syntax is <u>ReferenceName.MethodName</u>(args for 2nd through last parameters).

1.2 Implement method getWidth in class Interval as specified. Then try the following in the Command Window:

clear all	% In older versions of MATLAB, need to clear objects made using the old
	% class definition before using an updated class definition. Not
	% necessary in the latest version of MATLAB.
a = Interval(3,7);	
<pre>w = a.getWidth()</pre>	% w should be 4

1.3 Read method scale in class Interval. Revise scale to make effective use of method getWidth. Next try the following in the Command Window:

a.scale(2)	Note that method scale does not return a	anything
disp(a)	a should be (3,11)	

1.4 Implement method add in class Interval as specified. In interval arithmetic, the sum's left end is the sum of the two original left ends; the sum's right end is the sum of the two original right ends. Next try it out in the Command Window:

b = Interval(0,2); c = a.add(b) % c should be (3,13)

Do you understand everything so far? If not, ask for help!

1.5 Above, MATLAB's built-in disp function was used to display the properties of an object. We can *override* the built-in method to display what *we* want to see for an object of class Interval! To do so, we simply implement a disp method inside the classdef of Interval. This was done but commented out. *Un*comment the disp method in class Interval now, save the file, and type the following code in the Command Window:

```
x = Interval(3,7) % What is displayed? ______
% Since you didn't use a semicolon to end the assignment statement,
% Matlab called the disp method to display x. Since x is of type
```

- % Interval and class Interval has its own disp method, that specific
 - % disp method was used instead of the built-in disp.

Copy the contents of your completed file Interval.m into the code box for Problem 1 in MATLAB Grader. Test (and correct if necessary) your class definition.

2 Images and uint8 arithmetic

In class you have worked with images in the RGB colorspace, where channel 1 is R (red), channel 2 is G (green), and channel 3 is B (blue). But images can be represented in other colorspaces. Consider the YCoCg colorspace, where channels Y, Co, and Cg are mathematically related to R, G, and B via the following equations:

 $Y = \frac{1}{4}(2G + R + B)$ $Co = \frac{1}{2}(R - B) + 128$ $Cg = \frac{1}{4}(2G - R - B) + 128$

(This assumes the R, G, and B are in the range 0-255 and will yield Y, Co, and Cg in that same range.)

Implement the following function (remember that variables of type uint8 will only ever store values 0 to 255).

```
function ycocg = rgb2ycocg(rgb)
% Transform image from RGB colorspace to YCoCg colorspace.
% rgb: 3D uint8 array such that rgb(i,j,k) is the value of channel
% k (R, G, or B) for the pixel at row i and column j.
% ycocg: 3D uint8 array such that ycocg(i,j,k) is the value of
% channel k (Y, Co, or Cg) for the pixel at row i and column j after
% being transformed from RGB to YCoCg.
```